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ABSTRACT 

Non-alcoholic fatty liver disease is one of the main liver diseases worldwide. The most common cause of death in patients with non-

alcoholic fatty liver disease is cardiovascular disease. The relationship between these two conditions has been well established. 

Indeed, identical reasons may contribute to the development of cardiovascular disease and non-alcoholic fatty liver disease with 

lifestyle factors such as smoking, sedentariness, poor nutritional habits, and physical inactivity being major aspects. This review 

focuses on potential pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver. PubMed, EMBASE, 

Orphanet, MIDLINE, Google Scholar, and Cochrane Library were searched for articles published between 2006 and 2022. Relevant 

articles were selected using the following terms: “Non-alcoholic fatty liver disease,” “Сardiovascular diseases,” “Pathophysiological 

mechanisms.” The reference lists of all identified articles were searched for other relevant publications as well. The 

pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver remain largely speculative and may include 

systemic low-grade inflammation, atherogenic dyslipidemia, abnormal glucose metabolism and hepatic insulin resistance, endothelial 

dysfunction, gut dysbiosis, as well as the associated cardiac remodeling, which are influenced by interindividual genetic and 

epigenetic variations. It is clear that the identification of pathophysiological mechanisms underlying cardiovascular disorders in non-

alcoholic fatty liver disease will make the selection of therapeutic measures more optimal and effective. 
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Introduction
1Non-alcoholic fatty liver disease (NAFLD) is a 

main liver disease in Western countries representing 

approximately 75% of all chronic liver diseases (1). In 

their meta-analysis, Younossi et al. (2) reported that the 

global prevalence of NAFLD is 25.24% with the 

highest prevalence in the Middle East and South 

America and the lowest in Africa. In the Russian 

Federation in 2007, the detection rate of NAFLD was 

27.0%, and in 2014 this figure reached 37.1%, which 

placed NAFLD in a leading position among all chronic 

liver diseases (3). Currently, the most common cause of 

death in patients with NAFLD is cardiovascular disease 

(CVD) (4). The problem is aggravated by the growing 
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number of NAFLD patients with CVD, which is 

supposedly directly associated with cardiovascular risk 

factors (5).  

NAFLD is defined as fatty change (steatosis) 

affecting ≥5% of hepatocytes, and it has a spectrum of 

histologic features ranging from simple steatosis 

without liver fibrosis (nonalcoholic fatty liver) to 

nonalcoholic steatohepatitis (NASH). In turn, NASH is 

characterized by not only steatosis, but also hepatocyte 

ballooning, lobular inflammation, and varying stages of 

liver fibrosis (6). 

All stages of NAFLD are associated with an 

increased risk of acute coronary syndrome, 

atherosclerosis, stroke, malignant arrhythmias, etc. (7). 

The relationship between NAFLD and CVD has been 

confirmed by numerous experimental and clinical 

studies (8). In a systematic review and meta-analysis by 

Wu et al. (9) which included 34 studies (164,494 
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participants, 21 cross-sectional studies, and 13 cohort 

studies), although NAFLD was not associated with 

overall mortality (hazard ratio [HR] 1.14, 95% 

confidence interval [CI]: 0.99-1.32) or CVD mortality 

(HR 1.10, 95% CI: 0.86-1.41), NAFLD was 

accompanied by an increased risk of prevalent (odds 

ratio [OR] 1.81, 95% CI: 1.23-2.66) and incident (HR 

1.37, 95% CI: 1.10-1.72) CVD. For some specific 

CVDs, NAFLD was associated with an increased risk 

of prevalent (OR 1.87, 95% CI: 1.47-2.37) and incident 

(HR 2.31, 95% CI: 1.46-3.65) coronary artery disease, 

prevalent (OR 1.24, 95% CI: 1.14-1.36) and incident 

(HR 1.16, 95% CI: 1.06-1.27) hypertension, and 

prevalent (OR 1.32, 95% CI: 1.07-1.62) atherosclerosis. 

A meta-analysis including a total of 16 unique, 

observational prospective and retrospective studies with 

34,043 adult individuals (36.3% with NAFLD) and 

approximately 2600 CVD outcomes (>70% CVD 

deaths) over a median period of 6.9 years showed that 

patients with NAFLD had a higher risk of fatal and/or 

non-fatal cardiovascular events than those without 

NAFLD (random effect odds ratio [OR] 1.64, 95% CI: 

1.26-2.13). Patients with more severe NAFLD were 

also more likely to develop fatal and non-fatal 

cardiovascular events (OR 2.58, 95% CI: 1.78-3.75). 

Sensitivity analyses did not alter these findings. Funnel 

plot and Egger's test did not reveal any significant 

publication bias (10). 

The current review focuses on potential 

pathophysiological mechanisms of cardiovascular 

disorders in NAFLD. These mechanisms may include 

systemic low-grade inflammation, atherogenic 

dyslipidemia, abnormal glucose metabolism and 

hepatic insulin resistance, endothelial dysfunction, gut 

dysbiosis, as well as the associated cardiac remodeling, 

which are influenced by interindividual genetic and 

epigenetic variations (11) (Figure 1). 

Systemic low-grade inflammation 

NAFLD is associated with chronic, low-grade 

inflammation in the liver that causes systemic effects, 

which can be detected by revealing systemic alterations 

in immune cell subsets and humoral factors. In the liver 

and extrahepatic organs, these signals can promote 

cellular dysfunction, cell death, and deleterious tissue 

remodeling in an attempt to maintain structural and 

functional organ integrity. Importantly, the presence of 

NASH and advanced liver fibrosis increases the risk for 

systemic comorbidity in NAFLD. Although the precise 

nature of the crosstalk between the liver and other 

organs has not yet been fully elucidated, there is 

emerging evidence that metabolic inflammation, 

emanating partly from the fatty liver, is the engine that 

drives cellular dysfunction, cell death, and deleterious 

remodeling within various body tissues (12). 

The main causes of systemic low-grade 

inflammation in NAFLD are lipotoxicity, oxidative 

stress, endoplasmic reticulum stress, and mitochondrial 

dysfunction (13). Dietary factors may be an important 

trigger of systemic low-grade inflammation. For 

example, fatty acids that are contained in food may 

have a direct effect on immune cells, activate toll-like 

receptors (TLRs), and induce the cytokine cascade (14). 

Lipotoxicity activates inflammatory pathways and 

components of the immune system and has been 

observed in the liver, arterial vessels, adipose tissue, 

muscles, pancreas, and the central nervous system. 

Various compartments such as the liver, the 

gastrointestinal tract, and adipose tissue are significant 

sources of proinflammatory drivers including tumor 

necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, C-

reactive protein, fibrinogen, and fetuin-A (15). 

Oxidative stress and endoplasmic reticulum stress have 

been shown to impact metabolic inflammation by 

inducing endothelial dysfunction and predisposing 

patients with NAFLD to the development of 

cardiovascular disorders (16). In addition, persistent 

endoplasmic reticulum stress and mitochondrial 

dysfunction contribute to pathophysiological changes 

and play an important role in the progression of 

NALFD to NASH. The endoplasmic reticulum is the 

most important intracellular Ca2+ storage. It is well 

known that Ca2+ is a critical and versatile intracellular 

secondary messenger that is involved in various cellular 

processes. The abnormal release of endoplasmic 

reticulum Ca2+ not only induces endoplasmic 

reticulum stress and mitochondrial dysfunction, but 

also exacerbates hepatic cell lipotoxicity. The 

sarcoplasmic/endoplasmic reticulum calcium ATPase 

(SERCA) pump, the main regulator of intracellular 

Ca2+, actively re-accumulates released Ca2+ back into 

the endoplasmic reticulum thereby maintaining Ca2+ 

homeostasis. SERCA activity is reduced in NALFD, 

while enhanced SERCA activity alleviates endoplasmic 
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reticulum stress and apoptosis. It has been shown that 

the homeostasis of Ca2+ is closely related to the 

progression of NALFD to NASH (17). 

The constant presence and formation of new pro-

inflammatory cytokines contribute to such pathological 

conditions as atherogenesis, cardiomyopathy, and 

cardiac arrhythmias, among others. For example, 

systemic low-grade inflammation is involved in all 

stages of atherogenesis. Activated endothelial cells 

recruit leukocytes through the expression of adhesion 

molecules, which are regulated by pro-inflammatory 

cytokines (18). Chemokines cause the migration of 

circulating leukocytes, primarily monocytes, into the 

vascular intima, where they mature into macrophages. 

Excessive deposition of cholesterol crystals in the 

vascular intima activates the NLRP3 (NOD-like 

receptor family, pyrin domain-containing protein 3) 

inflammasome, central nucleotide-binding domain 

NACHT (NOD or NBD), leucine-rich repeat (LRR) C-

terminal domain, and N-terminal pyrin domain (PYD), 

which leads to the release of IL-1 (19). 

Atherogenic dyslipidemia 

Dyslipidemia is characteristic of NAFLD and 

closely related to CVD, whereas low-density 

lipoprotein (LDL) cholesterol is accepted as a key 

driver of atherosclerosis (20). Typically, dyslipidemia 

in NAFLD is accompanied by high serum triglycerides 

and low high-density lipoprotein (HDL) cholesterol 

levels, with moderately increased serum LDL 

cholesterol levels (21). 

Dysfunctional visceral adipose tissue and the 

increased accumulation of dysfunctional, ectopic fat in 

the liver and other organs such as the pericardium, 

 
Figure 1. The potential pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver disease 

(NAFLD). 
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pancreas, kidneys, or skeletal muscle, are closely 

related to adverse cardiometabolic outcomes (22). 

Dysfunctional adipocytes act as antigen-presenting 

cells and express pro-inflammatory cytokines such as 

TNF-α, IL-6, Il-1β, monocyte chemoattractant protein 

(MCP)4/CCL13 regulated on activation, normal T cells 

expressed and secreted (RANTES)/CCL5 и 

MCP1/CCL2 (23). The C-C motif chemokine ligand-2 

(CCL2) is a key mediator of the crosstalk among 

adipocytes, macrophages, and endothelial cells and can 

potentially aggravate the inflammatory state, resulting 

in increased expression of pro-inflammatory cytokines, 

chemokines, adipokines, and angiogenic factors (24). 

Although the liver is the central organ of lipid 

metabolism, in a healthy state it does not accumulate 

them. In NAFLD, hepatic fat accumulation results from 

an imbalance between lipid acquisition and lipid 

disposal, which is mediated by inadequate absorption 

of circulating lipids, enhancement of hepatic de novo 

lipogenesis (DNL), an insufficient increase of fatty 

acids compensatory oxidation, and impaired export of 

lipids as components of very-low-density lipoprotein 

(VLDL) (25). 

Analysis of available genetic data suggests that the 

altered operation of fatty-acid β-oxidation in liver 

mitochondria is the key process connecting NAFLD-

mediated dyslipidemia and elevated cardiovascular risk 

(26). In the early stages of NAFLD, an increase in 

mitochondrial oxidation compensates, at least partially, 

for the excess of hepatocellular lipids (27). Elevated 

lipid uptake and enhanced hepatic DNL lead to an 

increased accumulation of hepatic triglyceride with 

concomitant overproduction and secretion of large, 

triglyceride-enriched VLDL particles, which serve to 

mobilize hepatic fat for transport to peripheral tissues 

(28). Generally, once secreted into circulation, large 

VLDL particles lose their triglyceride moiety through 

lipoprotein lipase activity, turning into an equal number 

of atherogenic LDL particles with a dominant 

cholesterol content. LDL particles are taken up into the 

liver via the LDL receptor pathway (29). The 

overproduction of VLDL particles in NAFLD causes 

several lipoprotein disorders that lead to atherogenic 

dyslipidemia, which is characterized by high serum 

triglycerides and low HDL cholesterol levels, an 

atherogenic lipoprotein phenotype including a 

predominance of small dense LDL particles, an 

accumulation of triglyceride-rich lipoproteins and their 

remnants, as well as intermediate-density lipoproteins 

(30). The severity of these lipid disorders increases 

with more severe and advanced stages of NAFLD (31). 

The small dense LDL particles have a special tendency 

to penetrate through the vascular endothelium into the 

subendothelial space, which serves as the initiating 

event of the atherosclerotic plaque formation. In the 

vascular wall, LDL cholesterol is additionally oxidized 

and causes an innate immune response through TLRs 

(32). 

Atherosclerosis development is mainly mediated by 

apolipoprotein B-containing particles. Thus, in addition 

to LDL cholesterol-mediated risk for atherosclerosis, 

triglyceride-rich lipoproteins such as VLDL and 

intermediate-density lipoproteins also contribute to 

increased cardiovascular risk (33). These particles also 

contain apolipoprotein C3, which plays an important 

role in TLRs activation and, consequently, the 

inflammatory response (34). Lipoproteins containing 

apolipoprotein C3 activate TLR2 and TLR4 by 

dimerization, thereby activating the NLRP3 

inflammasome (35). Once activated by damage-

associated molecular patterns (DAMPs), pathogen-

associated molecular patterns (PAMPs), or other 

atherosclerosis-related stimuli, the NLRP3 

inflammasome regulates the activity of one of its 

constituent proteins, i.e. the enzyme caspase-1, also 

known as IL-1β converting enzyme. Activation of 

caspase-1 by the NLRP3 inflammasome leads to a 

proteolytic activation of pro-inflammatory cytokines of 

the IL-1β family and the subsequent induction of the 

IL-1 to IL-6 into the CRP inflammatory pathway, 

which is involved in the development of vascular 

inflammation and atherosclerotic CVD (36). Thus, 

TLRs activation by apolipoprotein C3 and subsequent 

NLRP3 inflammasome activation provide an important 

link between atherogenic lipoprotein patterns that are 

commonly observed in patients with NAFLD and 

activation of vascular immunity (inflammation) (28). 

Enhancement of hepatic DNL in NAFLD may also 

be associated with increased hepatic palmitic acid 

(16:0) flux and enrichment of palmitic acid in VLDL 

particles (37). Saturated fatty acids, such as palmitic 

acid, can induce vascular inflammation by the 

dimerization and activation of TLR2 and TLR4, 

representing another mechanism of how NAFLD 
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promotes the development of vascular damage and 

atherosclerosis (38). It has been noted that higher 

palmitic acid or palmitoleic acid (16:1n-7) levels were 

associated with increased risks of all-cause and 

cardiovascular mortality (39). 

Abnormal glucose metabolism and 

hepatic insulin resistance 
Abnormal glucose metabolism and hepatic insulin 

resistance are other major signs of NAFLD and are 

crucial in CVD pathogenesis (40). Glucose metabolism 

disorders in patients with NAFLD can be explained by 

systemic low-grade inflammation, visceral obesity in 

combination with usually excess body weight, and 

increased accumulation of dysfunctional ectopic fatty 

tissue (41). In addition to the increase in hepatic fat 

content, the accumulation of dysfunctional ectopic fatty 

tissue in the pancreas plays an important role in this 

situation and is essentially related to insulin resistance 

and β-cell dysfunction (42). Insulin resistance is 

accompanied by compensatory persistent 

hyperinsulinemia, which is of central importance for 

the induction and maintenance of an unfavorable 

metabolic environment (e.g., increased free fatty acid 

and glucose levels), as insulin resistance worsens 

further and subsequently contributes to the 

development of cardiometabolic disorders. In 

particular, hyperinsulinemia is associated with the 

increase in hepatic glucose production, which leads to 

an increase in plasma glucose levels and a constant 

increase in insulin levels, representing a self-

reinforcing cycle. This condition is aggravated by the 

fact that NAFLD reduces hepatic insulin clearance. At 

the same time, high insulin activates two transcription 

factors, namely sterol regulatory element-binding 

protein 1c (SREBP-1c) and carbohydrate-responsive 

element-binding protein (ChREBP), leading to greater 

expression of various lipogenic enzymes involved in 

DNL. This causes further hepatic fat accumulation and 

saturated fatty acids production, which, together with 

increased plasma glucose levels, maintain a disturbed 

metabolic environment (43). 

Insulin resistance and impaired insulin signaling 

affect various processes that are associated with 

atherogenesis, increased progression of atherosclerotic 

lesions, and the vulnerability of plaques. Persistent 

hyperglycemia and postprandial glucose spikes 

contribute to oxidative stress by concomitantly 

activating inflammatory signaling pathways, 

inflammasome activation, and vascular inflammation 

through advanced glycation end products, impaired 

regulation of lipoprotein metabolism, and ongoing 

ectopic fat accumulation (44). Furthermore, insulin 

resistance is associated with dysregulated 

neurohumoral activation of the renin-angiotensin-

aldosterone system (RAAS), may cause fibrinolytic 

dysfunction through increased plasminogen activator 

inhibitor-1 levels, and participate in the development of 

cardiac autonomic neuropathy. In turn, the latter may 

promote the development of systolic and diastolic 

dysfunction or cardiac arrhythmias as well as 

endothelial dysfunction (45). 

Endothelial dysfunction  
Endothelial dysfunction is an early stage in the 

pathogenesis of atherosclerosis and, therefore, is also 

crucial in the development of CVD. It is related to 

superoxide-associated oxidative stress, lipoprotein 

(e.g., apolipoprotein C3)-mediated vascular 

inflammation and selective vascular insulin resistance. 

Endothelial dysfunction is characterized by decreased 

bioavailability of nitric oxide (NO), the vascular 

protective vasodilatory molecule (46). Elevated serum 

levels of asymmetric dimethylarginine, which is an 

endogenous antagonist of nitric oxide synthase (NOS), 

lead to a decrease in NO availability that may 

contribute to impaired vasomotor regulation or vascular 

permeability and platelet dysfunction. Elevated serum 

levels of asymmetric dimethylarginine in patients with 

NAFLD are primarily a consequence of insulin 

resistance (47). Another factor involved in the 

development of endothelial dysfunction is 

hyperhomocysteinemia. Elevated serum homocysteine 

levels cause oxidative stress through reduced 

replication of glutathione storage and, subsequently, 

impair the formation of NO and increase vascular 

resistance and platelet hyperactivation. Elevated serum 

homocysteine levels were found with NAFLD (48). 

However, patients with NASH had lower serum 

homocysteine levels (49). Patients with NAFLD may 

also have an increased risk of developing 

atherosclerotic CVD due to an imbalance of 

procoagulants. They frequently have increased serum 

levels of the coagulation factors FVIII, FIX, FXI, and 
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FXII, which are accompanied by increased circulating 

concentrations of fibrinogen, von Willebrand factor, 

and plasminogen activator inhibitor-1, while 

antithrombin III and protein C are decreased (50). An 

additional aspect that may affect atherogenesis and 

plaque instability in patients with NAFLD is altered 

serum concentrations of vascular endothelial growth 

factor (VEGF). Elevated serum VEGF levels and signs 

of active angiogenesis, which indicate vascular 

remodeling, are observed in patients with NAFLD and 

are simultaneously associated with both the formation 

and the instability of plaques (51). However, current 

data is contradictory, and the atherogenic role of VEGF 

in NAFLD still needs further research. 

Gut dysbiosis 
It seems plausible that the gastrointestinal tract may 

be regarded as an origin of systemic inflammatory 

changes, thereby playing a crucial role in metabolic 

diseases such as NAFLD and CVD (52). The common 

feature of gut dysbiosis is intestinal barrier dysfunction 

that causes a subsequent increase in mucosal barrier 

permeability (53). Consequently, intestinal microbes 

and/or microbial products designated as PAMPs (e.g., 

lipopolysaccharides or peptidoglycans) and DAMPs 

(e.g., those that are released from damaged enterocytes) 

enter the systemic circulation and activate various 

cellular signaling pathways that induce a systemic 

inflammatory response associated with gut dysbiosis. 

This inflammation associated with gut dysbiosis may 

be a central link between the gut microbiota and the 

development of CVD (54). In particular, significant 

alterations in intestinal microbiota were found in 

patients with coronary artery disease and NAFLD and 

persisted in a decrease in Colinsella and 

Parabacterioides. This fact may be a potential 

explanation for the worse clinical outcome and disease 

progression in these patients compared to patients with 

coronary artery disease but no NAFLD (55). 

In an experiment on mice, the introduction of pro-

inflammatory intestinal microbiota enhanced systemic 

inflammation and accelerated atherogenesis (56). In 

this regard, it is interesting that statins, regardless of 

their effect in reducing LDL levels, can have an anti-

inflammatory effect. In addition, their use was 

associated with a lower prevalence of gut dysbiosis and 

thereby contributed to the attenuation of systemic 

inflammation (57). 

Intestinal commensals convert nutrients such as 

choline or L-carnitine into trimethylamine, which is 

then transformed into trimethylamine N-oxide by 

hepatic flavin monooxygenases. Trimethylamine N-

oxide production is less pronounced in vegans or 

vegetarians, whereas its formation is facilitated by a 

diet enriched with L-carnitine (58). A decrease in 

trimethylamine N-oxide levels was observed within 4 

weeks of stopping long-term consumption of red meat 

(59). Many studies (60) and several meta-analyses (61) 

have shown an adverse effect of elevated circulating 

trimethylamine N-oxide levels on the outcome of CVD. 

These studies have made it possible to predict mortality 

in patients with CVD and coexisting peripheral arterial 

disease (62). In addition, the harmful effect of 

trimethylamine N-oxide was noted in patients with 

ischemic stroke (63). Despite a small number of studies 

examining the role of trimethylamine N-oxide in 

NAFLD, some have shown a correlation of its serum 

levels with NAFLD severity, specifically due to 

concomitant CVD (64). Due to its ability to change the 

calcium signaling in platelets, trimethylamine N-oxide 

is associated with an increased risk of blood clot 

formation (65). At the same time, inhibitors of 

trimethylamine-producing enzymes significantly 

reduced serum trimethylamine N-oxide levels for up to 

3 days and prevented an increase in diet-induced 

platelet reaction and blood clot formation (66). In 

another study, a U-shaped relationship was observed 

between serum trimethylamine N-oxide levels and the 

risk of death in patients with recurrent venous 

thromboembolism (67). 

Genetic variants 
The five key genes involved in the NAFLD 

pathogenesis have been thoroughly studied. These 

include Patatin Like Phospholipase Domain Containing 

3 (PNPLA3), Transmembrane 6 Superfamily Member 2 

(TM6SF2), Glucokinase Regulator (GCKR), 

Membrane-Bound O-acyltransferase Domain 

Containing 7 (MBOAT7), and Hydroxysteroid 17-Beta 

Dehydrogenase 13 (HSD17B13) (68).  

Genetic variants, especially single-nucleotide 

polymorphisms, affect the flow of free fatty acids, 

oxidative stress, reactions to endotoxin production and 
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cytokine activity, and determine the development and 

progression of NAFLD (69). Additionally, the 

following have been linked to NAFLD and coronary 

artery disease: the genetic polymorphisms of 

adiponectin rs266729, adiponectin-encoding gene 

(ADIPOQ), leptin receptor (LEPR), apolipoprotein C3, 

peroxisome proliferator-activated receptors (PPARs), 

sterol regulatory element-binding proteins (SREBPs), 

transmembrane 6 superfamily member 2 (TM6SF2), 

microsomal triglyceride transfer protein (MTTP), TNF-

α, and manganese superoxide dismutase (MnSOD) 

(70). 

Some genetic polymorphisms, such as PNPLA3 

(rs738409 C>G) and TM6SF2 (rs58542926 C>T), may 

worsen liver diseases but also attenuate the strength of 

the association between NAFLD and CVD, possibly by 

their effects on lipoprotein metabolism (71). For 

example, Lauridsen et al. (72) demonstrated that the 

risk of coronary artery disease gradually rose with an 

increase in hepatic fat content. However, when using 

Mendelian randomization, PNPLA3 polymorphism was 

not causally associated with coronary artery disease. In 

addition, the genetic variants PNPLA3 and TM6SF2 

were not only strongly associated with NAFLD and its 

progression to NASH, liver cirrhosis, and 

hepatocellular carcinoma, but also with lower blood 

triglycerides and LDL-cholesterol concentrations as 

well as protection from coronary artery disease. 

However, further clarification is required as to what 

extent these genetic modifications affect the 

development of other CVD (73). 

Although MBOAT7 seems to have a neutral effect 

on atherosclerotic CVD, future studies are needed to 

confirm this and to investigate whether HSD17B13 

influences atherosclerotic cardiovascular risk (74). 

Overall, genetic studies support the relationship 

between NAFLD and atherosclerotic CVD, notably by 

altered VLDL secretion and mixed hyperlipidemia. In 

particular, these studies support the notion that genetic 

variants altering both NAFLD/hepatic fat and plasma 

lipid levels affect atherosclerotic cardiovascular risk. 

Some genetic variants cause VLDL overproduction, 

while others create VLDL retention, which affects 

lipids opposingly. Future genome-wide association 

studies involving liver biopsies are expected to provide 

novel NAFLD loci from large international patient 

cohorts. This will aid in elucidating the relation 

between NAFLD, atherosclerotic CVD, plasma lipids, 

and other coincident metabolic factors (75).  

Cardiac remodeling 
Cardiac remodeling is defined as a group of 

molecular, cellular and interstitial changes that manifest 

clinically as changes in size, mass, geometry, and 

function of the heart (76). This is the most common and 

complex response to injury causing cardiac mechanical, 

inflammatory, and neurohumoral stress. The process 

results in poor prognosis because of its association with 

ventricular dysfunction and malignant arrhythmias, 

which eventually lead to irreversible heart failure and 

mortality (77).  

Abundant clinical evidence supports close 

associations between NAFLD and cardiac remodeling 

(78). The potential mechanisms facilitating cardiac 

remodeling in NAFLD patients involve multistep 

processes associated with insulin resistance, RAAS and 

sympathetic nervous system, systemic inflammation, 

oxidative stress, gut microbiota, and genetic and 

epigenetic variations (79). VanWagner et al. (80) 

showed that NAFLD is related to increased body 

surface area and an increase in cardiac output and left 

ventricular filling pressures that may, over time, lead to 

the development of clinical heart failure. In the study 

by Styczynski et al. (81), the patients with NASH 

demonstrated significantly increased cardiac output and 

the echocardiographic signs of left ventricular 

concentric remodeling when compared with the 

isolated steatosis and no steatosis groups. 

The presence of an increased cardiac output and 

cardiac index in patients with NASH is especially 

intriguing, because NASH is regarded as an early step 

in the development of liver cirrhosis, the disease that is 

classically associated with the presence of 

hyperdynamic systemic circulation and portal 

hypertension (82). However, several reports have 

shown that portal hypertension may be present in 

patients with significant steatosis even before the 

development of evident liver fibrosis (83). Thus, more 

studies are needed to elucidate the presence of 

hyperdynamic systemic circulation in NASH. If 

confirmed, it could explain one of the potential 

mechanisms facilitating the development of heart 

failure or atherosclerotic complications in this 

important group of patients. 
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Conclusions 
The relationship between NAFLD and CVD has 

been confirmed by numerous experimental and clinical 

studies. Moreover, CVD is the main cause of death in 

patients with NAFLD, which makes the problem 

extremely relevant. Indeed, identical reasons may 

contribute to the development of CVD and NAFLD, 

with lifestyle factors such as smoking, sedentariness, 

poor nutritional habits, and physical inactivity being 

major aspects. It is clear that the identification of 

pathophysiological mechanisms underlying 

cardiovascular disorders in NAFLD will make the 

choice of therapeutic measures more optimal and 

effective. 
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